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Appendix A.  Gravity Turn Terminal Descent Guidance Theoretical 
Development 

Written by David W. Way; Edited by Scott A. Striepe 
 
The gravity turn terminal descent guidance capability is for use during an all-propulsive terminal 
descent phase of an EDL.  The routine is based on the use of gravity to turn the vehicle velocity 
and thrust to control the vehicle velocity magnitude. 
 
Background and Theory 
The term “gravity turn” is defined here as a trajectory in which the only force acting normal to 
the velocity vector, and thus providing the angular acceleration required to rotate the vehicle 
flight path angle, is gravity.  The gravity turn problem is to determine the magnitude of the thrust 
vector (the direction is constrained by the problem to be aligned opposite the velocity vector) 
required to achieve a specified terminal condition (altitude and velocity) at a near vertical 
orientation. The governing equation of motion can be written 
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During the powered portion of the terminal descent, vehicle dynamics are dominated by the 
propulsive thrust and drag is neglected. In order to solve the problem, the vector equation of 
motion must be written in scalar form. The free-body diagram of a gravity turn is shown in 
Figure A.1. 

 
Figure A.1. Free-Body Diagram 
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By definition, the velocity vector, V, in Figure A.1 is the atmospheric relative velocity vector.  
However, since the atmospheric winds are usually not known, the planet relative velocity vector 
is used. The primary constraint of a gravity turn, therefore, is that the thrust vector is directed 
opposite the direction of the relative velocity vector. 
 
 
Figure A.1 is used to write Equation 1 in the normal, axial, vertical, and horizontal directions.  
Equations 2 and 3 are the acceleration normal to the velocity vector and axially along the 
velocity vector, respectively.  The term axial refers to the nominal thrust axis of the vehicle, 
which is assumed to be aligned with the planet relative velocity as depicted in Figure A.1.   
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where g is the surface gravity acceleration, T is the vehicle thrust, and m is the vehicle mass. 
Note that goes to zero as the gravity turn approaches the target final altitude. Equations 4 and 5 
are the components of the acceleration in the local vertical and local horizontal directions, 
respectively. 
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These equations apply only to the specific gravity turn case, where the thrust vector is aligned in 
the direction opposite the relative velocity vector and the drag is negligible 
 
The axial acceleration, Equation 3, is integrated over the time-to-go, tgo, to get an expression for 
the final velocity, Vf, Equation 6.   
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The time-to-go is defined as the time interval between the current time and the final time at 
which the target altitude and velocity are achieved.  
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The vertical acceleration, Equation 4, is integrated over the time-to-go, to get an expression for 
the final vertical velocity, Equation 7. 
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Because the target condition is assumed to be in a near-vertical attitude (-90 deg flight path 
angle), the target vertical velocity is identical to the target velocity.  Therefore, either Equation 6 
or Equation 7 may be used to express the desired constraint on the terminal velocity. Since large 
amounts of kinetic energy may be masked from the guidance at shallow flight path angles, where 
the vertical component of velocity is small, system performance is improved by controlling total 
velocity through Equation 6, rather than vertical velocity (Equation 7). Equation 7 is integrated 
again over the time-to-go interval to get an expression for the final altitude, hf, Equation 8. 
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Evaluating the Integrals 
A few notes are in order about evaluating the integrals contained in Equations 6 and 8.   First, 
these integrals may not be evaluated unless the flight path angle and acceleration profiles are 
known, as well as the time-to-go.  However, a simple change of integration variable from time, t, 
to a non-dimensional time scale over the time-to-go,   removes the time interval dependence. 
Equation 9 shows how the time interval dependence is removed from one of the integrals. 
For 
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Second, the trust profile may be both normalized by a scale factor, Tsf, and multiplied by a 
throttle setting, , as shown in Equation 10. The throttle (or gain) allows the guidance to target 
the terminal conditions by linearly scaling the nominal thrust profile.  Equations 11 and 12 
demonstrate these substitutions for the remaining two integrals. 
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The usefulness of these three integrals is that they depend only on the shape of the assumed 
flight path angle profile and the desired thrust-to-mass profile over the non-dimensional time-to-
go interval.  The actual value of these integrals may be calculated off-line or as a separate 
subroutine and supplied to the guidance algorithm as parameters or gains.  Therefore the 
guidance may be written in a general fashion that is independent of the assumptions imbedded in 
the definition of the integrals.  Since the integrals represent certain assumptions on the profiles, 
the guidance is easily adapted to different assumptions or desired profiles by supplying new 
subroutines to evaluate the integrals. 
 
Substituting for the Integrals 

Equations 13 and 14 are the result of substituting the integral definitions (Equations 9, 11 and 
12) into the equations of motion (Equations 6 and 8).  These are the final forms of the equations 
of motion.  They express the altitude and velocity loss as a function of the current velocity and 
flight path angle state, the engine throttle setting (thrust profile multiplier), time-to-go, and the 
three profile integrals that depend only on the shape of the assumed flight path angle profile and 
the desired thrust-to-mass profile over the time-to-go.  Since the profile integrals are supplied as 
parameters, the only unknowns are the throttle setting and time-to-go. 
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The order in which Equations 13 and 14 are solved depend upon the mode in which the guidance 
is operating.  There are two guidance modes: a predictive mode in which the guidance is 
predicting the time-to-go and altitude loss for the assumed thrust profile, and a proactive mode in 
which the guidance determines the throttle setting required to achieve the terminal conditions.  
The predictive mode is used for determining the initiation of the powered descent.  The proactive 
mode is used to guide the vehicle during the powered descent. 
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Appendix B.  POST2 Mass Model User’s Guide 
Written by John J. Wagner; Edited by Scott A. Striepe 

 
I.  Introduction 

The purpose of the mass modeling task was to equip the standard Program to Optimize 
Simulated Trajectories II (POST2)B.1 code with the capability of utilizing mass metamodels for 
standard trajectory analysis.  This capability allows the user to simultaneously design both the 
trajectory and an appropriately sized vehicle capable of following the intended trajectory.  
Several mass models were developed and integrated into the default mass initialization routines 
and test cases were developed which employ these mass model in a variety of scenarios.  These 
scenarios correspond to various EDL technology packages currently under consideration for 
landing large payloads on the surface of Mars.  The following sections explain the origin of the 
various mass models, their assumptions and functional limitations, and the results of the 
developed sample test cases.        
 
II.  Simulation Architecture 

The standard POST2 calculation routines were preserved wherever possible when implementing 
the mass model subroutines.  The basic framework architecture may be seen in Figure B.2.1.  
The intent of the architecture was to avoid a high degree of coupling between the mass model 
subroutines and the standard POST trajectory functions.  The user begins by entering the 
necessary mass and trajectory input variables and initial values for the targeting algorithm.  The 
wgtini.f routine is called which initializes the vehicle weight model.  This file has been modified 
to call a special subroutine, massEDL.f which is used to perform a dynamic mass allocation.  
Instead of reading a deterministic mass or weight from the input deck, mass model input 
information is collected and used to determine the initial component masses (e.g. the aeroshell, 
descent stage, aeroshell reaction control system (RCS), etc.).  These component masses are used 
to set the stage weights (WGTSG(i)) using the vehicle component weight model.    
     

 
Figure B.2.1.  Framework Mass Model Architecture 
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After the stage weights are set in massEDL.f, the POST trajectory is then allowed to run as 
normal.  In the final usable phase (i.e., just before the final event), the mass convergence routine 
which resides in the special calculations routine calspe.f is called.  This routine examines the 
mass results from the trajectory and computes the convergence variables.  The standard target 
algorithms (projected gradient or NPSOL) are used to determine if convergence has been 
attained.  If not, the mass control variables are iterated and the process repeats.  Once 
convergence has been reached, the program outputs a standard output deck containing the 
standard trajectory variables as well as mass variables.  All variables in the mass modeling 
variable structure begin with “MEDL_M”.  For example, the current value of the entry mass 
during iteration is referred to as MEDL_MGUESS. 
 
III.  Simulation Concepts & Modeling Approach 

Three simulations for exploring potential EDL technology packages have been developed.  
These include;  
 

 An ellipsled rigid aeroshell model and associated RCS model.   
 A flexible, inflatable aeroshell model (Mars Inflatable Aeroshell System (MIAS)) and 

associated RCS model. 
 An unconstrained all propulsive model with no aeroshell or thermal protection system. 
  
The operational concepts of each of these simulation types may be seen in Figure B.3.1.  All 
three simulations begin in the same 250 km x 1 Sol orbit and immediately perform an 
instantaneous deorbit maneuver at apoapsis to place the vehicle on an appropriate descent 
transfer trajectory.  The notional trajectories shown in the figure begin at entry interface.  The 
ellipsled simulation (blue curve) uses bank angle to control entry acceleration during a high 
altitude constant G phase.  Following this phase the vehicle flies full lift-up until aeroshell 
jettison.  Approximately 3.5 km above ground, the ellipsled aeroshell is jettisoned and the 
descent stage engines are immediately ignited.  The engines are commanded to hold 3 (Earth) 
G’s until reaching the next event.  At 12.5 meters above the surface, the vehicle executes a brief 
hover phase, maintaining a constant velocity of 2.5 m/s for 5 seconds.  The POST targeting 
algorithm perturbs the deorbit ΔV and the 3.5 km engine start/aeroshell jettison altitude to ensure 
that the hover phase ends at zero geodetic altitude (GDALT = 0).          
 
In the MIAS simulation (red curve), a coasting phase occurs after entry interface where the 
aeroshell is used to decelerate the vehicle.  MIAS aeroshell jettison and the initiation of powered 
flight is controlled with an event timer whose duration is controlled by the targeting algorithm to 
ensure the landing condition is met.  For this simulation, the deorbit ΔV is fixed.  During the 
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powered flight phase, generalized acceleration steering is used to hold a constant sensed 
acceleration of 3 (Earth) G’s.   
 

 
Figure B.3.1.  Simulation Concept of Operations 

 
Below 15 km, a terminal velocity controller is activated.  This controller follows a linear velocity 
profile to the surface and prevents large required accelerations late in the trajectory.  While this 
approach incurs more gravity losses than an uncontrolled approach, it also absorbs parameter 
variations and prevents small changes in initial conditions from generating disproportionately 
large changes at landing.  The purpose of the controller is to enhance the robustness of the 
simulation and to add a degree of realism since a controlled landing approach would be utilized 
on any piloted Mars landing missions.  Following this controlled approach phase, the vehicle 
uses the same brief hover phase utilized by the ellipsled to land.   
 
The all propulsive simulation (green curve) utilizes many of the same flight phases as the MIAS 
simulation.  It begins in the same orbit, employs a constant G powered deceleration phase, uses 
the same terminal velocity controller, and the same landing approach hover as the MIAS 
simulation.  The primary difference is the lack of an aerodynamic deceleration phase and 
aeroshell jettison event.  It is important to note that this simulation does not include any 
maximum heat rate or heat load constraints.  Since the mass model does not include an allotment 
for any thermal protection, this simulation offers a best-case performance result.  Other all 
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propulsive concepts require thermal constraints to be considered during entry which add ΔV 
losses and ultimately propellant mass to the converged solution.   
 
Based on the above operational concepts, mass models must be developed for several 
architecture elements: 
 

- Descent stages for all three simulations 
- Ellipsled aeroshell 
- Ellipsled RCS system 
- MIAS aeroshell 
- MIAS RCS system 

 
Descent Stage Modeling Approach 

Weight and sizing models for suitable descent stages were developed in EXAMINE, an Excel-
based weights and sizing algorithm developed by D.R. Komar (NASA LaRC).  The EXAMINE 
models were used to generate descent stage inert masses as a function of several input variables.  
Since the output data depends on more than one input variable, multivariate regression analysis 
was chosen as the primary descent stage modeling tool.  Regression equations are compact, may 
be quickly evaluated, and are easily integrated into the POST simulation framework.  However, 
since regression equations are created from a discrete set of model data, they have finite input 
variable ranges which, if violated, can lead to large modeling errors.   
 
Multivariate regression analysis leads to a polynomial equation typically of the form 
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where 
h represents the number of linear coefficients 
k represents the number of pure quadratic coefficients 
l represents the number of cross term coefficients 
bo represents the intercept  
bi represents the linear coefficients  
bii represents the pure quadratic coefficients  
bij represents the cross term coefficients 
xi and xj represent the ith and jth input variables respectively 
R represents the desired response. 
 
Once the input variables xi,…, xj are known, the response R (which is the descent stage inert 
mass in this case) may be directly computed by evaluating equation (1).  The statistical analysis 
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software package JMP® by SAS was used to construct the multivariate regression equations 
using a standard least squares approach.  Due to the low computational cost of each EXAMINE 
simulation, a full factorial experimental design  was selected for all the descent stage models: 
that is, data was generated for each combination of parameters since these computations could be 
completed using only a small amount of computation time.   
 
The resulting response surfaces were tested against several figures of merit to ensure that an 
accurate representation of the point-design data was achieved.  These figures of merit include: 
  
(a)  Coefficient of Determination 

The coefficient of determination (also known as R2) is a measure of the variation in the response 
around the mean due to the model and not random error.  This metric should approach unity to 
ensure a good fit. 

(b)  Actual-vs-Predicted Data  

Inspection of the actual data against the predicted data, usually in the form of a scatter plot, 
visually displays the deviation of the model from the true behavior.  The predicted data is 
obtained by re-entering the data used to generate a candidate model back into the model itself.  A 
actual-predicted data scatter plot should closely adhere to a positively inclined 45◦ line with an 
intercept through the origin.  The data should be evenly spread along the line with minimal 
clustering. 

(c)  Model Fit Residuals 

The residuals illustrate the absolute error associated with the assumed model for each predicted 
value.  Inspection of the residuals of the predicted data, typically in the form of a residual-vs-
predicted scatter plot, should show a random dispersion of the data points about zero with no 
distinguishable pattern and a small magnitude relative to the predicted value. 

(d)  Model Fit Error   

The model fit error is the percent deviation of the predicted data relative to the actual data used 
to create the model.  A distribution of the model fit errors graphically depicts the percent error of 
the predicted data with respect to the actual data.  The distribution should approximate a standard 
normal distribution such that the mean is close to zero and the standard deviation is less than or 
equal to unity.   

(e)  Model Representation Error 

The model representation error is the percent deviation between randomly generated test data 
and the actual data used to create the model.  A distribution of the model representation error 
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graphically depicts the percent error of the random data with respect to the actual data.  This 
distribution should also approximate a standard normal distribution.   
 
Response surfaces meeting the above criterion are typically sufficient for engineering 
approximations and conceptual design purposes.  The models themselves and the critical fitting 
statistics are available in section IV. 
 
Ellipsled Aeroshell Modeling Approach 

The model data for the ellipsled structural and thermal protection masses was generated by Dave 
Kinney (NASA Ames).  This data was compressed into a table look-up model for integration into 
the mass subroutines (see Section IV).   
 
Ellipsled RCS, MIAS RCS, and MIAS Aeroshell Modeling Approach 

Each of these models has output data which is a function of a single input variable.  Therefore 
these elements may be modeled using a monovariate linear least squares approach.  (Note: The 
multivariate regression analysis used to generate the response surfaces uses linear least squares 
to fit a set of output data which depends on several input variables simultaneously.)  The MIAS 
aeroshell and RCS models are derived from the original Astrium report (see references B.2 and 
B.3).  The ellipsled RCS model is based on the RCS system masses of robotic Mars missions 
developed by Juan Cruz (LaRC).  
 
IV. Default Simulation Mass Models  

This section presents the various models implemented in the default simulations as well as fitting 
statistics and other relevant data. 
 
Descent Stage Response Surfaces 

The descent stages modeled in EXAMINE for the three default simulations are closely related to 
one another.  All are based on a legged lander concept (see Figure B.4.1) similar in form to the 
Apollo lunar module descent stage.  The descent stage consists of: 
 
 Four spherical composite propellant tanks with a multi-layered insulation (MLI). 

Overwrap and thermal control system (radiators) to inhibit propellant boiloff. 
 A thrust structure which acts as the vehicle frame. 
 A landing gear assembly. 
 Four pump-fed LOX/CH4 rubber engines (sized using required vehicle T/W and given 

engine uninstalled T/W): 
 Oxidizer: Fuel (O/F) ratio = 3.5 
 600 psi chamber pressure 
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 Assumed nozzle expansion ratio = 200  
 A power management and distribution system (PMAD). 
 A small avionics package to route throttling and engine commands from the payload to 

the engine control/health management systems. 
 A 30 percent dry mass margin (matches DRA 5/6). 
 Propellant tanks and feed/fill/drain system sized to include volume of residuals and 

pressurants.  
 

 
Figure B.4.1.  EXAMINE Descent Stage Conceptual Layout 

 
The three descent stages also make several common hardware assumptions: 
  
 Keep-alive and flight power are drawn from the payload power supply bus. 
 RCS and associated hardware is mounted on the payload.  This is largely due to the 

assumption that the ascent stage will require an RCS system and that cargo-only missions 
may add an RCS to the payload.   
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Table B.4.1.  Descent Stage Inert Mass Response Surface Input Variable Ranges 
Ellipsled 

Variable Minimum Baseline Maximum Units Comments 
Descent ΔV 500 1250 2000 m/s Ideal ΔV based on constant Isp 
Deorbit  ΔV 0 25 50 m/s Ideal ΔV based on constant Isp 
T/Wsystem 3 4.5 6 Earth G’s   
T/Wengine 30 60 90     
Mission Payload 
Mass 20 45 70 mT   

Aeroshell Mass 30 50 70 mT  

MIAS 

Variable Minimum Baseline Maximum Units Comments 
Descent ΔV 200 1100 2000 m/s Ideal ΔV based on constant Isp 
Deorbit  ΔV 0 25 50 m/s Ideal ΔV based on constant Isp 
T/Wsystem 1 3.5 6 Earth G’s   
T/Wengine 30 60 90     
Mission Payload 
Mass 20 45 70 mT   

Aeroshell Mass 0.7 5.35 10 mT based on available MIAS test data 

All Propulsive 

Variable Minimum Baseline Maximum Units Comments 
Isp 369 634.5 900 sec   
T/Wengine 80 140 200     
T/Wsystem 1 2.5 4 Earth G’s   
Total ΔV 3000 4500 6000 m/s   

 
The differences between the three models are the type and ranges of the input variables.  Table 
B.4.1 lists the input variables for each of the decent stage response surfaces along with their 
associated ranges and units.  Note that both the ellipsled and MIAS cases have the same input 
variables while the all propulsive case uses slightly different inputs.     
 
This disparity in the input variables is due to the lack of an aeroshell in the all propulsive 
simulation.  Because the all propulsive descent stage has no aeroshell, both the deorbit and 
descent maneuvers are performed with the same payload, the mission payload.  The ellipsled and 
MIAS simulations perform the deorbit maneuver carrying both the mission payload and the 
aeroshell while the descent maneuver is performed with only the mission payload.  This situation 
requires the tracking of two different ΔV measures for these simulations whereas only one is 
necessary in the all propulsive case.  Note that only one mission payload is considered in the all 
propulsive simulation which corresponds to the 40 mT baseline payload mass used in Mars 
Design Reference Architecture (DRA) 5.0 (Table B.4.2).  Also note that only one Isp is 
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considered for the ellipsled and MIAS simulations corresponding to the 369 second Isp used in 
DRA 5.0.  While the all propulsive response surface can accommodate a range of Isp, only 
LOX/CH4 propellant densities are used for vehicle sizing.  Therefore, this model looses fidelity 
for fuel/oxidizer combinations significantly different from LOX/CH4.  Since the required 
propellant mass is computed by POST2, propellant bulk density errors will only effect the 
descent stage inert mass modeled by the all propulsive response surface.     
 

Table B.4.2.  Descent Stage Inert Mass Response Surface Default Values 
Ellipsled & MIAS 

Item Value Comments 
Isp [sec] 369 Note: only one Isp considered 
# engines  4   
engine type pump-fed   
O/F Ratio 3.5   
Propellant O2/CH4   
Chamber Pressure [psi] 600   

Nozzle Area Ratio 200   

All Propulsive 

Item Value Comments 
Payload Mass [mT] 40 Note: only one payload considered 
# engines  4   
engine type pump-fed   
O/F Ratio 3.5   
Propellant O2/CH4   

Chamber Pressure [psi] 600   

Nozzle Area Ratio 200   
 
The EXAMINE-derived response surface models for the descent stage inert masses may be seen 
in table B.4.3.  These equations may be reconstructed into their polynomial form using equation 
(1).  For example, the ellipsled descent stage inert mass may be expressed as  
 
minert = exp[8.014791+ 0.000322ΔVdescent + 0.000333ΔVdeorbit + …  
+4.36E-05(ΔVdescent)( T/Wsystem)+…]      (kg, 2) 
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Table B.4.3.  EXAMINE Derived Descent Stage Inert Mass Response Surfaces 
Ellipsled MIAS All Propulsive 

Coefficient  Value Coefficient  Value Coefficient  Value 

Intercept 8.014791 Intercept 7.50698341 Intercept 9.69143058 

DescentDV 0.000322 descentDV 0.00020052 TWsys 0.6560922 

DeorbitDV 0.000333 deorbitDV 0.00087792 Tweng -0.0017234 

Twsys 0.558493 Twsys 0.75175856 Isp -0.0057324 

Tweng -0.02758 Tweng -0.021925 DV 0.00041462 

PL 5.11E-05 PL 0.00005348 Twsys*Tweng -0.0015231 

AS 2.69E-07 descentDV*Twsys 3.4128E-05 Twsys*Isp -0.0005215 

DescentDV*Twsys 4.36E-05 descentDV*Tweng -2.2012E-06 Tweng*Isp 3.7750E-06 

DescentDV*Tweng -3.3E-06 Twsys*Tweng -0.005155 Twsys*DV 5.2370E-05 

Twsys*Tweng -0.00487 descentDV*PL 5.2589E-10 Tweng*DV -4.4098E-07 

DescentDV*PL 8.46E-10 Twsys*PL 4.5708E-07 Isp*DV -1.5094E-06 

DeorbitDV*PL -2.84E-09 Tweng*PL -7.7423E-08 Twsys*Twsys -0.0362629 

Twsys*PL 3.59E-07 descentDV*descentDV 9.8210E-09 Tweng*Tweng 5.2231E-06 

Tweng*PL -9.62E-08 deorbitDV*deorbitDV -4.1254E-05 DV*DV 6.9153E-08 

DescentDV*AS -5.46E-11 Twsys*Twsys -0.0759616 Isp*Isp 1.1632E-05 

DeorbitDV*AS 2.49E-09 Tweng*Tweng 0.00039685 Twsys*Tweng*Tweng 2.9848E-06 

PL*AS -3.05E-12 PL*PL -5.9390E-10 Twsys*Tweng*Isp 7.6563E-07 

DescentDV*DescentDV -5.71E-08 deorbitDV*deorbitDV*deorbitDV 5.4153E-07 Tweng*Tweng*Isp -5.8419E-09 

Twsys*Twsys -0.03608 descentDV*descentDV*Twsys 3.7979E-09 Twsys*Isp*Isp 5.1789E-07 

Tweng*Tweng 0.000523 descentDV*Twsys*Twsys 1.3742E-06 Tweng*Isp*Isp -4.6339E-09 

PL*PL -5.70E-10 Twsys*Twsys*Twsys 0.00494902 Isp*Isp*Isp -7.8643E-09 

DescentDV*DescentDV*DescentDV 2.37E-11 descentDV*descentDV*Tweng -2.1900E-10 Twsys*Twsys*DV 6.6688E-07 

DescentDV*DescentDV*Twsys 1.27E-08 descentDV*Twsys*Tweng -4.1817E-07 Twsys*Tweng*DV -8.4039E-08 

DescentDV*Twsys*Twsys 4.17E-06 Twsys*Twsys*Tweng 1.2759E-05 Tweng*Tweng*DV 8.0749E-10 

Twsys*Twsys*Twsys 0.002461 descentDV*Tweng*Tweng 2.3237E-08 Twsys*Isp*DV -9.7616E-08 

DescentDV*DescentDV*Tweng -7.93E-10 Twsys*Tweng*Tweng 3.1034E-05 Tweng*Isp*DV 8.5557E-10 

DescentDV*Twsys*Tweng -1E-06 Tweng*Tweng*Tweng -2.2634E-06 Isp*Isp*DV 1.4370E-09 

Twsys*Twsys*Tweng -0.00013 descentDV*Twsys*PL -1.2170E-10 Twsys*DV*DV 4.7424E-09 

DescentDV*Tweng*Tweng 5.65E-08 Twsys*Twsys*PL -3.4885E-08 Tweng*DV*DV -4.2210E-11 

Twsys*Tweng*Tweng 4.19E-05 descentDV*Tweng*PL 2.9097E-12 Isp*DV*DV -8.9390E-11 

Tweng*Tweng*Tweng -3.4E-06 Twsys*Tweng*PL -7.6450E-10     

DescentDV*DescentDV*PL -9.85E-14 Tweng*Tweng*PL 2.3984E-10     

DescentDV*Twsys*PL -1.82E-10 descentDV*PL*PL -2.1960E-15     

Twsys*Twsys*PL -5.30E-08 Twsys*PL*PL -1.1990E-12     

DescentDV*Tweng*PL 5.24E-12 Tweng*PL*PL 2.9282E-13     

Twsys*Tweng*PL 1.81E-09 PL*PL*PL 2.9364E-15     

Tweng*Tweng*PL 2.69E-10         
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Ellipsled MIAS All Propulsive 

Coefficient  Value Coefficient  Value Coefficient  Value 

Twsys*PL*PL 1.72E-12         

Tweng*PL*PL 2.57E-13         

PL*PL*PL 2.82E-15         

Variable Key: 
DescentDV = descentDV = Descent ΔV PL = mission payload 
DeorbitDV = deorbitDV = Deorbit ΔV AS = aeroshell mass (structure, thermal protection, & aeroshell RCS) 
Twsys = T/Wsystem    Isp = specific impulse, Isp 
Tweng = T/Wengine   DV = total ΔV (all propulsive only) 
 
These response surfaces reside in calspe.f and are called after each trajectory run using by setting 
the convergence flag MEDL_MCONV to unity.  The response surface independent variables 
listed in Table B.4.1 are drawn from information in the input deck and from values computed 
during the trajectory.  After the inert mass is computed, the current payload capability of the 
vehicle is computed by subtracting the inert mass from the landed mass which POST obtains at 
the end of each trajectory iteration.    
 
Descent Stage Response Surface Fitting Metrics 

The goodness-of-fit metrics discussed in Section 3 were used to evaluate the accuracy of the 
response surface curve fits.  Analysis of goodness-of-fit is primarily a graphic procedure based 
on recognition of data patterns and abnormalities.  To spare the reader the details of the statistical 
analysis, the fitting graphics have been omitted.  The essential fitting results which convey the 
accuracy of the response surfaces are available in Table B.4.4.  In order for a curve fit to be 
valid, the value of R2 should approach unity.  In addition, the spread of the residuals scaled by 
the minimum predicted value (presented in the second row of Table B.4.4) should generally lie 
below 5 percent.  All of the response surfaces meet these criteria.   
 
The remaining three rows of Table B.4.4 present the critical parameters describing the model 
representation error (MRE) distribution.  This distribution is created by generating random input 
vectors to the response surfaces and calculating the percent error between the actual inert mass 
and the predicted inert mass for each vector.  Valid response surface error distributions should 
closely approximate a standard normal distribution with a mean near zero and a standard 
deviation near unity.  Recall that for a normal distribution, 99.7 percent of the possible errors 
should be within ±3σ of the mean.  Note that the standard deviation presented in Table B.4.4 is a 
sample standard deviation which approximates the population standard deviation, σ.  All of the 
MRE’s presented here have a shape closely approximating a normal distribution with means and 
standard deviations as listed in Table B.4.4.  The ellipsled and MIAS cases both have tight error 
distributions with low maximum observed errors.  The all propulsive case, however, has a wider 
distribution due to the wide variable ranges examined.       
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Table B.4.4.  Descent Stage Inert Mass Response Surface Fitting Statistics 

Item Ellipsled MIAS 
All 
Propulsive Comments 

R2 0.999685 0.999899 0.998085   
Residual Plot 0.869565 0.757575758 2.78 % 

Mean % Error 0.00716 -0.025582 0.2058705 
of the model representation error 
distribution 

Standard Deviation  
(% Error) 1.065 0.7905835 2.5882445 

of the model representation error 
distribution 

Max Observed % Error 5.638 4.08 -9.533 
of the model representation error 
distribution 

 
The MRE data should not be confused with the model fit error (MFE) distribution which 
describes the error between the response surface and the data used to generate the response 
surface.  Generally, the MRE is a wider distribution (i.e., has a larger standard deviation) and is 
therefore a more conservative benchmark for determining response surface accuracy.  Since, for 
the three surfaces presented here, the differences between the means of the MFE and MRE 
distributions were small and because the MRE’s all had larger standard deviations, only the 
MRE’s are presented.  This is to avoid potential misuse of the MFE as the accuracy benchmark 
in place of the MRE.       
 
Ellipsled Aeroshell & RCS 

An ellipsled aeroshell is similar in form to a sphere-capped cylinder with either an open or closed 
leeward section (Figure B.4.2)  Both the descent stage and the mission payload are loaded into 
the cargo bay area of the ellipsled for the entire first segment of the mission up to aeroshell 
jettison during descent and landing.  The RCS system on the ellipsled is an integral part of the 
aeroshell structure and is used for directional control during the entry phase of the mission.   
   

 
Figure B.4.2.  Conceptual Ellipsled Aeroshell with Notional Payload 

 
The ellipsled aeroshell mass model is in a table look-up format as a function of the orbital period, 
the aerodynamic reference length, and the mission payload mass (Table B.4.5).  Note that only 
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discrete values for the mission payload (20,000 kg, 40,000 kg, & 70,000 kg) and the reference 
length (10m, 12m) may be used; i.e., this model is not valid for interpolation between these 
payloads and reference lengths. The stated aeroshell masses include both the structural mass and 
the mass of the required thermal protection system needed for atmospheric entry.       
 

Table B.4.5.  Ellipsled Aeroshell Mass (Structure & Thermal Protection) 

Payload 
Reference 
Length 

Orbit 
Period 

Aeroshell 
Mass 

kg m min kg 
20000 10 >1000 37972.32 
20000 10 <1000 40283.18 
20000 12 >1000 55247.8 
20000 12 <1000 56360.1 
40000 10 >1000 37100 
40000 10 <1000 41726.9 
40000 12 >1000 57408.84 
40000 12 <1000 59356.5 
70000 10 >1000 44736.92 
70000 10 <1000 43892.48 
70000 12 >1000 60650.4 
70000 12 <1000 63851.1 

 
The ellipsled aeroshell RCS mass model is a regression equation based on previous Mars robotic 
missions.  This equation, once reduced to simplest terms, is a simple scaling factor applied to the 
entry mass.  The RCS system mass may be computed as 
 
mRCS = 0.01996(mentry)                                                (kg, 3) 
 
where mentry is the current value of MEDL_MGUESS.   
 
MIAS Aeroshell & RCS 

The MIAS is a Lavochkin/Babakin scaled conceptual design (Figure B.4.3) based on a small 
reentry test vehicle, the Inflatable Reentry and Descent Technology (IRDT) demonstrator.  
Similar in function to the ellipsled aeroshell, the MIAS shields the payload from the entry 
thermal loads and is jettisoned during the landing phase.  The primary differences between the 
MIAS and the ellipsled are the geometric configurations and in the inflatable/deployable nature 
of the MIAS concept.  An inflatable aeroshell has the potential to reduce the Earth launch mass 
of the entry stack.  The subsequent flow-down mass impacts of such a reduction make inflatable 
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aeroshell options attractive and the subject of much current research.  The MIAS RCS, like the 
ellipsled RCS, is an integral part of the MIAS structure.   

 
Figure B.4.3.  MIAS Conceptual Design Layout 

 
The MIAS aeroshell and RCS mass models were generated from data available in the original 
MIAS Design Definition Report from Astrium GmbH (see reference 3).  The report presents 
conceptual mass equipment lists (MELs) for three entry masses, two discovery class missions 
(4mT & 6mT) and one exploration class mission (60-70 mT).  The correlation between the three 
breakdowns is highly linear both on the system and on the subsystem levels.  Consequently, the 
mass models derived from these mass MELs are also linear.  The MIAS aeroshell mass may be 
expressed as a function of the entry mass; 
 
mMIAS = 133.07(mentry/1000) + 151.57                                  (kg, 4) 
 
where mentry is the current value of MEDL_MGUESS in kg.  The RCS mass for the MIAS 
aeroshell may be expressed as  
 
mMIAS-RCS = 14.269( mentry/1000) - 17.39                                  (kg, 5) 
 
where mentry is the current value of MEDL_MGUESS in kg.  Since most of the original data 
appears to be a linear extrapolation between the three given MELs, small extrapolations past the 
entry mass upper limit (70 mT) would appear to be no more or less valid than entry masses 
falling within the model limits.    
  
V.  Simulation Test Cases 

Three POST2 input decks are available to model the three simulations discussed above.  These 
input files were provided as part of the simulation architecture for the Rapid EDL Analysis 
assessment and can be accessed on the NASA Langley Atmospheric Flight and Entry Simulation 
Branch computer under the REDLASim directory on the root level.  Each simulation may be 
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used as an example or starting point for future simulations or as a test to ensure the mass/sizing 
calculation processes are correct.   
 
General Mass/Sizing Computational Scheme 

All simulations use the same general scheme to implement the mass models.  When the 
simulation begins, POST2 begins the mass initialization procedure for the first trajectory 
iteration.  It is at this time that mass EDL.f is called by the weight initialization routine, wgtini.f.  
The massEDL.f routine uses the current entry mass guess (MEDL_MGUESS) as the mass of the 
total entry vehicle stack.  It computes the aeroshell and aeroshell RCS masses based on the entry 
mass and any other required inputs.  Since the mission payload is a user-defined input, the only 
remaining element of the entry vehicle stack whose mass is unknown is the descent stage total 
mass (which includes both the inert and propellant masses).  The response surfaces are not used 
at this time since the propellant mass needed to execute the trajectory is not yet known. 
 
The descent stage total mass is computed by subtracting the aeroshell, aeroshell RCS, and 
mission payload masses from the current entry mass guess.  The sum of the mission payload 
mass and descent stage total mass are stored as the first step weight (WSTPD1) and the sum of 
the aeroshell mass and aeroshell RCS masses are stored under the second step weight 
(WSTPD2).  The masses are, of course, converted to weight just prior to storage as a step weight.  
This allows the aeroshell and its RCS system to be jettisoned simultaneously by removing the 
second step weight from the model.  For the all propulsive simulation, which lacks an aeroshell 
and an aeroshell RCS system, the second step weight is set to zero.   
 
At touchdown, the convergence calculations in calspe.f are activated by setting the convergence 
flag (MEDL_MCONV) to unity.  Now that the trajectory is known, all of the required response 
surface inputs (see Table B.4.1) are known and the descent stage inert mass (MEDL_MDSIM) 
may be computed.  This inert mass is subtracted from the touchdown mass (MEDL_MTDWN) 
and the result is the payload capability (MEDL_MPLCALC) of the entry stack for the current 
iteration.  The standard POST targeting algorithms treat this payload capability as any other 
target variable.  If the payload capability does not equal the desired mission payload 
(MEDL_MPL) then the entry mass guess is iterated and the trajectory is recomputed.   
 
Expected Simulation Results 

The nominal input decks for the three default simulations should run to completion and converge 
on stable solutions if all computations are implemented as intended.  The essential results for the 
parameters of interest are available in Table B.5.1.  
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Note that the MIAS payload mass is half of the payload selected for the ellipsled and all 
propulsive simulations.  The MIAS payload is necessarily small to prevent gross extrapolation of 
the MIAS descent stage response surface.  Recall that this surface is only valid up to an aeroshell 
mass of 10 mT.  Doubling the mission payload would generate an increase in required entry 
mass which would increase the aeroshell mass and violate the variable boundary.   
 

Table B.5.1. Nominal Simulation Results for Main Variables of Interest 

 POST Variable Units Ellipsled MIAS 
All 
Propulsive Comments 

medl_mcount - 11 11 10 iteration counter 

medl_mguess kg 107759.542 65546.4048 307862.432 
guessed entry mass/initial mass 
or vehicle stack 

medl_mpl kg 40000 20000 40000 
mission payload mass, 
convergence target variable 

medl_mashtot kg 39250.3586 9791.72223 0 aeroshell + aeroshell RCS mass 

medl_mdestot kg 28509.183 35754.6826 267862.432 
descent stage total mass 
(propellant + inert mass) 

medl_mdsim kg 17184.9759 12671.3262 51875.7505 
descent stage inert mass (mdestot 
- usable propellant) 

medl_mtdwn kg 57184.2071 32680.5538 91875.5957 touchdown mass  

medl_mplcalc kg 39999.2312 20009.2276 39999.8452 
calculated payload capability at 
touchdown for current iteration 

medl_mperiod min 0 0 0 
period for ellipsled for aeroshell 
sizing table* 

medl_mdv m/s 630.266204 1917.25542 0 
descent ΔV  
(total ΔV - deorbit ΔV) 

medl_mpropcon kg 0 0 215986.837 
all propulsive consumed 
propellant mass  

dvimag m/s 14.9781669 13.4 13.498365 deorbit ΔV 

xmax2 Earth G 3.00018485 3.24536806 2.62041539 maximum sensed acceleration 

videal m/s 645.244371 1930.65542 4375.7333 total ΔV 
*Note this is always defaulted to zero except in the one printblock where the calculation is called. 
 
This limitation on the MIAS mass model is discussed in greater detail below (see section on 
Coincidental Extrapolation below).  Several other details in table B.5.1 are significant; 
 
 The value of MEDL_MGUESS in the final printblock is the converged entry mass 
 MEDL_MPERIOD is always zero in the final printblock.  This variable is only required 

for the ellipsled aeroshell sizing and appears as non-zero in the first phase of the nominal 
trajectory evaluation.  For the default 250 km x 1 Sol orbit, the nominal period is 1476.4 
minutes. 
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 MEDL_MDV represents the descent ΔV (i.e., the total ΔV – deorbit ΔV).  The all 
propulsive simulation has no aeroshell to jettison and therefore all maneuvers are 
performed with the same payload.  Therefore, the distinction between the descent and 
deorbit ΔV is unimportant in this case.  To prevent confusion, MEDL_MDV is set to zero 
for this simulation and the value of VIDEAL is used to size the descent stage. 

 MEDL_MPROPCON was added to the namelist while developing the all propulsive 
simulation as a check on the mass model development process.  Consequently, it is only 
reported for the all propulsive simulation.  The consumed propellant for any simulation 
may alternately be determined by subtracting the descent stage inert mass 
(MEDL_MDSIM) from the descent stage total mass (MEDL_MDESTOT).        

 
Multibody Simulations & Single Iteration Cases 

A multibody simulation was created late in the study to assess the feasibility of running parallel 
sets of mass computations in the same trajectory.  This simulation multi2.inp pairs the MIAS 
default test case with the all propulsive test case.  The mass results obtained for the multibody 
case are consistent with those obtained for the individual test cases as expected.  This proves that 
the mass computations may be successfully utilized in a multibody simulation environment.  The 
provided test case is not optimized or targeted to avoid convergence stability issues stemming 
from the inherent differences in the event structures for the two test cases.  For more information 
on constructing multibody simulations, see the POST2 User’s Manual.    
 
Three single iteration cases were created for each of the default simulation types (MIAS, all 
propulsive, and ellipsled).  These cases obtain the same results as the three default simulations 
except the single iteration cases converge immediately whereas the default simulations require 
multiple iterations.     
 
Simulation Characteristics, Assumptions, & Limitations 

The default POST2 input decks are all 3-DoF simulations which use Mars GRAM 2005 to 
determine a suitable average atmospheric profile.  The atmosphere is static with no random 
number seeds to allow repeatable results to be obtained.  The aerodynamic characteristics of the 
default entry vehicles may be found in Table B.5.2.  The drag coefficient for the MIAS is taken 
from the MIAS design definition report for a zero angle of attack case.  The drag coefficient 
remains relatively constant from the hypersonic regime down to low supersonic conditions.   
 
Due to the lack of drag data for a legged lander in a base-first entry attitude, the lander was 
assumed to have drag characteristics similar to a blunt cone.  Empirical measurements of blunt 
cone configurations in the hypersonic and high supersonic regimes indicate a drag coefficient 
near unityB.4.  The ellipsled drag characteristics are taken from baseline DRA 5.0 simulations 
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which employ a 10x30 m ellipsled.  Note that the ellipsled as currently defined flies a lifting 
trajectory in contrast to the MIAS and all propulsive simulations.   
    
The nose radius of the entry vehicle is used by POST2 to compute the thermal loading using a 
Mars-adapted Sutton-Graves approach.  The nose radius of the ellipsled was also taken from 
baseline DRA 5.0 simulations whereas the MIAS and all propulsive nose radii are assumed 
values.  Note that the last row of Table B.5.2 gives the aeroshell diameter which is directly 
computed from the stated reference area in the second row.  These reference diameters are 
assumed values which were found to yield stable mass/sizing solutions.    
 

Table B.5.2. Entry Vehicle Aerodynamic Characteristics 
POST 
Variable Units Ellipsled MIAS 

All 
Propulsive Variable 

LREF m 10 10 10 aerodynamic reference length 

SREF m^2 78.53982 314.16 176.71 reference area 
RN m 6.5 10 10 aeroshell nose radius 
CDT - 2.96 1.55 1 constant drag coefficient 
CLT - 1.39 n/a n/a constant lift coefficient 

n/a m 10 20* 15 aeroshell diameter 
*Represents the inflated MIAS diameter. 
 
The default simulations in their current form share several common assumptions which limit the 
fidelity and applicability of the results.  The primary emphasis in the development of the test 
cases was centered on mass model development and integration.  Consequently, these 
assumptions are not critical to the mass/sizing capability of the simulations.  The following 
issues should be assessed before any of the default simulations are used for research purposes: 
 
 For simplicity and reduced run time, jettisoned aeroshells are not tracked and pose a 

possible landing site impact hazard. 
 To ensure convergence stability, simple constant drag models are used. 
 Detailed guidance and control models are not implemented, again for simplicity and 

reduced run time. 
 No aeroshell separation dynamics are modeled. 
 Due to the lack of a detailed supersonic retropropulsion model, all drag coefficients are 

set to zero during powered flight.  Consequently all lift and drag forces are zero during 
powered flight phases. 
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Coincidental Extrapolation 

It is important to note the coupling between the MIAS descent stage mass model and the MIAS 
linear regression models.  The data used to generate the descent stage mass model accounts for 
aeroshell masses up to 10 mT.  A 10 mT MIAS aeroshell corresponds to a maximum allowed 
entry mass (MEDL_MGUESS) of roughly 66.9 mT.  For MIAS aeroshell masses greater that 10 
mT, the MIAS descent stage will be forced to extrapolate.  This problem does not exist for the 
ellipsled simulation since the ellipsled aeroshell model is a table look-up and is therefore 
bounded.  The ellipsled descent stage mass model can accommodate aeroshells beyond these 
bounds.   
 
The above issue has been discussed in order to illustrate a potentially critical issue, namely 
coincidental extrapolation in which valid inputs to one model generate invalid inputs for another 
model.  In the case of the MIAS model, the sensitivity of the descent stage inert mass to the 
aeroshell mass is very small.  When the descent stage model data was analyzed in JMP, the 
coefficients associated with the aeroshell mass were all found to be statistically insignificant.  
Therefore, the aeroshell mass does not explicitly appear in the MIAS descent stage response 
surface.  Since this is the case, a small degree extrapolation of the current MIAS response surface 
is permissible.  Note, however, that for sufficiently large aeroshell masses, the effect of the 
aeroshell mass on the descent stage inert mass will no longer be negligible.  Extrapolation 
beyond 5-10 mT over the stated ranges is discouraged.   
 
VI. Conclusions 

This document has summarized the key features and implementation methodology of an iterative 
mass/sizing routine embedded in the POST2 computational framework.  The topics and 
examples discussed herein are intended to serve as a guidepost for the user in modifying the 
existing mass/sizing routines to suit current research efforts.     
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Appendix C.  Animation Tool v2.3  
Written by Behzad Raiszadeh and Jeremy Shidner; Edited by Scott A. Striepe 
 
I. Introduction 

Typically the output from trajectory simulation programs is analyzed using two-dimensional 
time history plots. It is often desired to animate the trajectory where position and orientation of 
the bodies in flight are put into motion. The following is a MATLAB™ based tool that generates 
a movie from the trajectory data. The animations generated using this tool serve as an 
engineering analysis tool to gain further insight into the dynamic behavior of flight vehicles. This 
tool is able to animate a single body as well as multiple vehicles in flight, and has been tailored 
for output generated from POST2 simulations.  
 
II. Method 

This tool has been designed such that no code modification is required by the user. The 
animation tool obtains most of the required inputs from the POST2 input file, POST2 output file, 
and the Matfile (Figure C.1). The user is required to provide master_setup.txt,  geom_data and 
camera_properties.txt files for additional parameters.  
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III. Step-by-Step Instructions 

This section outlines the procedure, step-by-step, to make a trajectory animation. The animation 
tool has been developed in MATLAB™. All the source files have been compiled using the 
MATLAB™ Compiler. The compiled executable, named animation_driver.exe, is a stand-alone 
application and is used to generate trajectory animations in AVI format. The AVI file is 
compatible with both PCs and Macs. 
 
Step 1: Installation 

MATLAB™ Component Runtime (MCR) module needs to be installed on the host machine. A 
MATLAB™ license is not required for the MCR installation. The MCR installer utility program 
(MCRInstaller.exe) will be provided as part with the animation tool. The MATLAB™ 
Component Runtime installation procedure is provided in MATLAB™ Compiler User’s Guide 
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[C.2], page 4-6. It is also available on the web. The instructions are provided for the Windows 
platform. 
 
http://www.mathworks.com/access/helpdesk/help/toolbox/compiler/compiler_ug_collection.html 
 
Windows installation 
The following components make up the animation application on Windows platforms.  
 
MCRInstaller.exe Self-extracting MATLAB™ Component Runtime library utility; Platform-
dependent file that must correspond to the end user’s platform. 
 
animation_driver.exe Animation application 
animation_driver.ctf Component Technology File archive; Platform-dependent file that must 

correspond to the end user’s platform. 
data_dict.txt  Holds all search and assignment variables for the Animation application. 
PlumeGeom.mat  Specialized rocket plume data file. 
 
The above files may be found at: 
 
/new_home/rais/matlab/animation_V2.3/Executable/ 
 
Copy the above files to the local drive in the same directory as the trajectory data. The animation 
program is provoked by double-clicking the animation_driver.exe file. 
 
Step 2: Set up local directory 

The user needs to set up a local directory containing all the case specific files, such as the POST2 
input file, output file, Matfile, and other setup files. These files contain mission specific data 
such as the trajectory, movie setup (frame rate, frame size, background color, lighting, etc), and 
links to where the geometries for the vehicles are stored. The following is a listing of local files: 
 
POSTfile.inp 
POSTfile.out 
POSTfile.mat 
master_setup.txt 
camera_properties.txt 
geom_data 
 
Samples of these files can be found in the following directory: 
 
/new_home/rais/matlab/animation_local_dir/ 
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Step 3: POST2 trajectory data 

The POST2 input file, output file, and the Matfile need to be copied to the local directory where 
they are processed and prepared for animation. 
 
POST2 Input file  

Some parameters are extracted from the POST2 input file. This includes planet rotation rate, 
mass of each vehicle, vehicles activation/deactivation, event sequencing, line 
activation/deactivation, line attach point locations, etc. The input parser also looks through all the 
included files to gather information. The user needs to make sure the path to the included files 
remains accurate if the input file and include files are copied from their original directory. If the 
input file contains a “* milestone read” statement, it should be replaced by “* include 
milecreate_fname.inp”, where “milecreate_fname.inp” is the input file that created the binary 
milestone.  
 
POST2 Matfile  

The animation tool expects the following variables in the POST2 Matfile for each active vehicle. 
Ensure they are included in the profile. For POST2 variable definitions see Reference C.1. The 
burden of choosing a proper time interval between the data points is placed on the user. 
Choosing a proper time interval is a function of the desired movie frame rate and the apparent 
speed of the movie. A suggested time interval is 1/25th second, so that there are 25 frames 
available to the tool for every second of real time.  See section 3.4 for further discussion. 
 
time – trajectory time 
longi – inertial longitude 
decln – declination 
ib matrix – inertial to body direction cosine matrix (9 elements) 
xi, yi, zi – cartesian coordinates of the vehicle CM in inertial frame 
gammar – planet relative flight path angle 
azvelr – azimuth of the planet relative velocity vector 
xcg, ycg, zcg – location of cg with respect to the BR frame 
 
An example print block that may be used in the POST2 run can be found in the following 
directory:   /misc/home0/rais/matlab/animation_local_dir/ 
 
POST2 output file  

The event numbers were obtained from the POST2 input file, and the corresponding event times 
are extracted from the POST2 output file.  
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Step 4: Setting up master_setup.txt 

Next, the user needs to fill in appropriate data for the master_setup.txt input file (shown in Figure 
C.2). This file lets the user specify data that is global in nature, such as the background color, 
number of movie frames per second, lighting parameters, movie name, and link to of various 
input files. The variable names are descriptive for convenience. All colors are input as three 
integers representing the Red, Green, and Blue (RGB) intensities ranging from 0 to 255. The 
entries in bold are required entries, and the entries in italic are informational and will be 
displayed with a dial or as a bar graph. Display of informational parameters is completely 
optional. Other parameters in plain font are required parameters but will default to the values 
listed below if the user does not provide input. 
 
post_input_file         =“c1_animation.inp”      // mandatory entry
post_output_file        =“c1_animation.out”      // mandatory entry 
post_matfile            =“c1_animation_25fps.mat”// mandatory entry 
movie_name              = mera_take2.avi         // default output.avi if not input 
frames_per_second       = 25                     // mandatory entry 
projection              = perspective            // other option: orthographic 
num_pixels_horizontal   = 800                    // movies always 3 X 2 aspect ratio 
ground_geom             =“landing_patch.mat”     // ground patch geometry file 
 
light_color             = 255  255   255        // by default, only one light source 
light_color2            = 210  210   160        // additional optional light source 
light_position_ned      =   0    0  -500        // default position of light 1 
light_position_ned2     =  -4   30  -100        // position of additional light 
background_color        =   0    0     0        // background black by default 
gauge_color             = 150  150   150        // all gauges in gray by default 
 
starting_index          = 1                 // starting index defaulted to 1 
ending_index            = 3516              // defaulted to the length of trajectory 
step                    = 1                 // use higher numbers to reduce run time 
 
altimeter_var           = gdalt                 // altitude up to 100 km 
radar_altimeter_var     = hgtagl                // altitude up to 3000 m 
G_meter_var             = asmg                  // acceleration in Earth Gs 
mach_meter_var          = mach                  // mach meter 
airspeed_var            = velr                  // airspeed gauge 
horiz_vel_var           = N_vel E_vel           // horizontal velocity gauge 
fuel_gauge_var          = wprop                 // fuel usage 
fuel_capacity           = 234                   // amount of fuel when full 
vertical_speed_var      = wr                    // vertical speed gauge 
attitude_indicator_var  = pitr rolr             // attitude indicator gauge 
turn_coordinator_var    = beta turn_rate        // turn coordinator gauge 
 
altimeter_assigned_spot        = 5              // default altimeter spot 
radar_altimeter_assigned_spot  = 6              // default radar altimeter spot 
G_meter_assigned_spot          = 7              // default G meter spot 
mach_meter_assigned_spot       = 8              // default mach meter spot 
airspeed_assigned_spot         = 9              // default airspeed gauge spot 
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horiz_vel_assigned_spot        = 10             // default horizontal vel gauge spot 
fuel_gaguge_assigned_spot      = 11             // default fuel usage spot 
vertical_speed_var             = 12             // default vertical speed gauge spot 
attitude_indicator_var         = 13             // default attitude indic gauge spot 
turn_coordinator_var           = 14             // default turn coord gauge spot 
 
display_var                        = gammar_1   // displayed as a bar graph 
display_var2                       = velr_1     // display of a second bar graph 
display_var_put_right              = 1          // displayed on the right side

Figure C.2.  master_setup.txt listing 
 
The frames_per_seconds parameter specifies the number of frames that are combined to make 
one second of animation. If the reciprocal of this parameter is equal to the time interval provided 
by the Matfile, then the movie will appear to be in real time. Other combinations of frame rate 
and output time increment can be used to simulate slow motion or fast-forwarding effects. For 
example, if frames_per_seconds = 20 and Matfile time interval is 0.1, the movie will appear to 
be twice the normal speed. The recommended values for frames_per_seconds are 20 and 25. The 
movie will be choppy for small frame rates around 10, and the monitor displays cannot keep up 
with frame rate of 50 and higher. 
 
Ground_geom specifies a Matfile that holds ground geometry.  For Mars animations, this 
information is obtained from MOLA data.  The program that generates the Matfile is described 
at:   /misc/home0/rais/matlab/animation_mola/README.txt 
 
Ground geometry needs to cover the latitude and longitude range as spanned by the POST2 
output file. 
 
Starting_index, ending_index and step specify a subset of the trajectory to be animated. If left 
out, starting_index will default to one, ending_index will default to the length of the trajectory, 
and step equals one. By default, the entire trajectory is animated. 
 
Display_var = ‘POST variable’ fields are optional. The POST2 variables specified in this field 
are displayed on the bottom of the screen as moving bar graphs. The variable names need to be 
exactly as they appear in the POST2 Matfile.  By default, the bar graphs move horizontally from 
left to right when increasing in value. Bars graphs are stacked from bottom to top if more than 
one is requested. A total of 5 bar graphs may be requested.  If desired, the bar graphs can be 
displayed on the right of the screen. This is accomplished by exercising the 
display_var_put_right = 1 option.  
 
The animation tool supports the display of some parameters by dials and gauges. The following 
parameters are available for dial display: time, net velocity, horizontal velocity, acceleration in 
Gs, Mach number, altitude up to 100 km, altitude up to 3000 m, spent fuel, vertical speed, pitch, 
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roll, beta, and turn rate. Dials and gauges are automatically assigned a spot on the screen, but the 
spot assignment can be overridden by the user in the animation_setup.txt file. Figure C.3 shows 
the default dial and gauge spot assignments. 
 

 
Figure C.3.  Default Gauge Locations 

 
Figure C.4 is an example of all the gauges being used on a Mars entry animation. All the gauges 
are placed in their default location in this example. 
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Figure C.4.  Example of Gauges 

 
Step 5: Setting up geom_data 

The geom_data text file is responsible for setting up the geometrical representation of vehicles in 
flight (see Figure C.5). The syntax of geom_data is similar to the POST2 input deck. Vehicle 
geometries are input at the start of POST2 events. The animation tool expects a geometry input 
for each vehicle when first activated. Geometry input for an existing vehicle overwrites the 
previous input. Overwriting previous geometry can be used to reflect vehicle appearance changes 
such as jettisoning of spent stages, heatshield separation, parachute deployment, etc. The 
animation tool processes this file along with the POST2 input file. 
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  event          = 1                          / event to add vehicle 
  vehicle        = 1                          / vehicle number relative to POST2 
  veh_geom_file  = “patch_data/capsule”       / relative path to vehicle geometry 
  incl_cg_calc   = 1                          / include in composite cg calculation 
  incl_body_axes = 1                          / display body axes 
  eng_scale      = 1 1 2 2                    / scaling of rocket engine plumes 
  throttle_var01 = gvrc1                      / thruster throttling variable 1 
  throttle_var02 = gvrc2                      / thruster throttling variable 2 
  throttle_var03 = gvrc3                      / thruster throttling variable 3 
  throttle_var04 = gvrc4                      / thruster throttling variable 4 
 
  event          = 45                         / event to add vehicle 
  vehicle        = 2                          / vehicle number relative to POST2 
  veh_geom_file  = “patch_data/mer_parachute” / relative path to vehicle geometry 
  incl_cg_calc   = 1                          / include in composite cg calculation 
  incl_body_axes = 1                          / display body axes 
  eng_scale(2)   = 3                          / scale rocket engine 2 by factor of 3 
  throttle_var01 = gvrc1                      / thruster throttling variable 1 
  throttle_var02 = gvrc2                      / thruster throttling variable 2 
  throttle_var03 = gvrc3                      / thruster throttling variable 3 
  throttle_var04 = gvrc4                      / thruster throttling variable 4 

 
Figure C.5.  geom_data sample 

 
The geometry is input as a collection of MATLAB™ patch elements. For more information on 
patches refer to MATLAB™ graphics manual. Patches are ideal for visualizing 3D objects such 
as aerospace vehicles and spacecrafts of arbitrary shapes. When drawing patches, the vertices 
must be input in POST2 Body Reference (BR) frame. The animation tool makes appropriate 
transformations to shift the geometrical representation of the vehicles to a planet relative 
coordinate system. The animation tool loads the geometrical data file specified on the right hand 
side of the veh_geom_file entry above. The file that is loaded contains an array of structures 
stored in geom_data with each element of the array making up a part. Each element of the 
geom_data array contains the coordinates of the vertices, polygons and color information. Color 
can be input in two ways. The first method is to specify a uniform color for a part using 
geom_data(n).color = [R G B] option. The animation tool also accommodates for each face or 
vertex to have its own color. This is accomplished by providing an additional color_array matrix 
of data in geom_data structure .The number of entries in color_array field must correspond to the 
number of entries in the faces or vert0 variables, with each entry being the RGB intensity. The 
wireframe model of the Mars Exploration Rover entry capsule shown in Figure C.6 contains 
1152 vertices, and 1104 polygons.  
    geom_data(1).vert0: [1152x3 double] 
    geom_data(1).faces: [1104x4 double] 
    geom_data(1).color: [226 204 190] 
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Figure C.6.  MER Entry Capsule Model 
 
Camera position and target are specified with respect to the composite vehicle center of mass. 
For a single vehicle in flight, composite vehicle center of mass is the same as the vehicle center 
of mass, but for multiple vehicle trajectory simulation, the composite vehicle center of mass is 
calculated at each time step. The user can exclude a vehicle from composite center of mass 
calculation by setting the incl_cg_calc flag to zero in the geom_data file. This is useful when a 
body is being jettisoned, where the desired focus of the camera is the main vehicle, not the 
jettisoned body. 
 
Step 6: Setting up camera_properties.txt 

The camera special effects are accomplished by manipulating the camera_properties.txt file. This 
file contains the camera position and camera target with respect to the composite vehicle center 
of mass as a function of time or event number. Event number input may be denoted as ‘evxxx-y’, 
where xxx is the specific event number and y is time in seconds that may be added or subtracted 
to the event time. The camera generally moves through space along with the vehicle. The user 
specifies where the camera is located with respect to the composite vehicle center of mass. The 
camera position and target points are input in the geographic frame or in the relative velocity 
frame. North, east, and down directions form the Cartesian X, Y, and Z axes in the geographic 
frame. In the velocity frame, X-axis is in direction of the relative velocity vector; Y-axis is in the 
local horizontal plane, and Z-axis completes the right-handed coordinate system. The camera 
viewing angle is also input in camera_properties.txt file. The camera viewing angle can be used 
to simulate the effect of zooming in and out. All the properties are input as a function of 
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trajectory time. The animation tool linearly interpolates in between discreet time intervals, so all 
camera movements appear smooth. In Figure C.7 is a sample of the camera_properties.txt file: 
 
 
% Variables: 
% CVA             : Camera viewing angle 
% posi_cs         : camera position coordinate system 
%                     ned -> Cameral location defined in NED frame with respect to composite CG 
%                     fix -> Camera location stays fixed in ECR frame 
%                     vel -> Camera location defined in relative velocity frame 
% camera_position : Camera position, if posi_cs = fix camera_position is in NED frame 
% targ_cs         : Camera target coordinate system 
%                     ned -> Camera target defined in NED frame with respect to composite CG 
%                     fix -> Camera target stays fixed in ECR frame 
%                     vel -> Camera target defined in relative velocity frame 
% camera_target   : Camera target coordinates in targ_cs coordinate system 
% CFT             : Camera fixed time. Used only when posi_cs or targ_cs = fix 
% 
% time     CVA  posi_cs  <-  camera_position ->   targ_cs    <- camera_target ->         CFT 
%--------------------------------------------------------------------------------------------- 
   “0.0”    45    ned      0.0    -5.0    -20.0      ned      0.0      0.0     0.0      “0.0” 
 “300.0”    45    ned      0.0    -5.0    -20.0      ned      0.0      0.0     0.0      “0.0” 
 “320.0”    45    ned    -50.0     0.0    -15.0      ned      0.0      0.0     0.0      “0.0” 
“1135.0”    45    vel    -10.0    10.0      0.0      vel      0.0      0.0     0.0      “0.0” 
“1140.0”    45    vel    -50.0    10.0      0.0      vel      0.0      0.0     0.0      “0.0” 
“1143.0”    45    vel    -50.0    10.0      0.0      vel      0.0      0.0     0.0      “0.0” 
“1144.0”    10    vel    -50.0    10.0      0.0      vel      0.0      0.0     0.0      “0.0” 
“1149.0”    10    vel    -50.0    10.0      0.0      vel      0.0      0.0     0.0      “0.0” 
“1150.0”    45    vel     15.0    10.0      0.0      vel      0.0      0.0     0.0      “0.0” 
“1155.0”    45    vel     15.0    10.0      0.0      vel      0.0      0.0     0.0      “0.0” 
“1157.0”    45    vel    -50.0     0.0      0.0      vel      0.0      0.0     0.0      “0.0” 
“1170.0”    45    vel    -50.0     0.0      0.0      vel      0.0      0.0     0.0      “0.0” 
“ev300-2”   40    ned    -50.0     0.0    -30.0      vel    -10.0      0.0     0.0      “0.0” 
“1177.0”    40    ned    -50.0     0.0    -30.0      vel    -17.0      0.0     0.0      “0.0” 
“1178.0”    40    ned    -70.0     0.0     20.0      vel    -17.0      0.0     0.0      “0.0” 
“1185.0”    40    ned    -70.0     0.0     20.0      vel    -17.0      0.0     0.0      “0.0” 
 “ev850”     5    fix    -20.0     0.0      0.0      vel    -17.0      0.0     0.0  “ev850+6” 
“1205.0”     5    fix    -20.0     0.0      0.0      vel    -17.0      0.0     0.0  “ev850+6” 
“1206.0”    27    ned    -70.0     0.0    -90.0      vel    -25.0      0.0     0.0      “0.0” 
“2000.0”    27    ned    -70.0     0.0    -90.0      vel    -25.0      0.0     0.0      “0.0” 

 
Figure C.7.  Sample camera_properties.txt file 

 
In the camera position options (shown in Figure C.7 above), the camera location and target 
points are defined with respect to the composite center of mass. The animation tool also supports 
a fixed option for the camera where either the camera location or camera target or both remain 
fixed in space. This feature is activated by specifying the “fix” option in the camera_position 
and/or camera_target coordinate system flag. When this option is chosen, the system also looks 
up the Camera Fixed Time (CFT) field in the table. The CFT field is the time or event when the 
vehicle position is looked up as the fixed location for the camera. This option simulates the effect 
of the vehicle flying past the camera, with the camera tracking. Setting the position and target 
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coordinate systems to fix (columns 3 and 7) simulates the effects of a completely stationary 
camera. 
 
Step 7: Run animation_driver 

The animation tool is now ready to build all the data structures for generation of the movie. 
Double-click on the animation_driver executable to initiate the program. The animation_driver 
executable opens a disk operating system (DOS) window and goes through the POST2 input 
files, master_setup.txt, geom_data, camera_properties.txt, POST2 output file, and the POST2 
Matfile to build up appropriate data structures. The movies are made in AVI format, and are 
compressed using Cinepak codec on the PCs. Figure C.8 is a sample frame taken from one of the 
Mars entry animations. 
 
 

 
Figure C.8.  A Sample Frame from Mars Entry Simulation 
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Appendix D.  Animation GUI v1.0  
Written by Jeremy Shidner; Edited by Scott A. Striepe 

 
I. Introduction 

As demand for trajectory visualization has become more apparent, the needs of the EDL designer 
has grown substantially for animations.  In the past, each animation would take excessive 
amounts of time to link the POST2 simulation to the animation tool (See Appendix C).  By 
integrating specific components of the animation tool into a graphical user interface (GUI), the 
time needed to complete a trajectory animation, from POST2 data, can be reduced from weeks to 
a matter of hours.  Specifically, input files are generated by the GUI and executed by the 
animation tool’s driver. 
 
II. Method 

In addition to the POST2 files required by the animation tool, the GUI will build a structure of 
data in the MATLAB™ file handles.mat as well as create the required files by the animation 
tool, master_setup.txt, geom_data, and camera_properties.txt.  The file, handles.mat, will hold all 
necessary inputs that are specific to the animation being developed (Figure D.1).  Due to 
specialized inter-dependence between the handles.mat file and the files being used by the 
animation tool, saved settings cannot be used by other POST2 trajectory data.  This limitation 
means that the same animation settings and files cannot be used for an alternate set of trajectory 
data and animation tool files.  The animation data being used must remain in the local animation 
directory for correct operation. 
 

Figure D.1.   Animation GUI Flow Diagram 
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III. Step-by-Step Instructions 

This section outlines the procedure, step-by-step, to use the GUI to interface with the animation 
tool.  The animation GUI has been developed in MATLAB™. All the source files have been 
compiled using the MATLAB™ Compiler.  The compiled executable, named animation_gui.exe, 
is a stand-alone application and is used to interface with the animation tool. 
 
Step 1: Installation 

MATLAB™ Component Runtime (MCR) module needs to be installed on the host machine. A 
MATLAB™ license is not required for the MCR installation. The MCR installer utility program 
(MCRInstaller.exe) will be provided as part with the animation GUI. The MATLAB™ 
Component Runtime installation procedure is provided in MATLAB™ Compiler User’s Guide 
[D.1], page 4-6. It is also available on the web. The instructions are provided for the Windows 
platform. 
 
http://www.mathworks.com/access/helpdesk/help/toolbox/compiler/compiler_ug_collection.html 
 
Windows Installation 
  The following components make up the animation GUI on Windows platforms.  
 
MCRInstaller.exe Self-extracting MATLAB™ Component Runtime library utility; Platform-dependent file 
that must correspond to the end user’s platform. 
animation_gui.exe Animation GUI executable 
animation_gui.ctf Component Technology File archive; Platform-dependent file that must 

correspond to the end user’s platform. 
animation_driver.exe Animation tool executable 
animation_driver.ctf Component Technology File archive; Platform-dependent file that must 

correspond to the end user’s platform. 
data_dict.txt  Holds all search and assignment variables for the Animation application. 
PlumeGeom.mat  Specialized rocket plume data file. 
Geometries/  Directory containing archived vehicle geometry. 
 
The animation GUI is provoked by double-clicking the animation_gui.exe file. 
 
Step 2: Set Up Local Directory 

The user needs to set up a local directory containing all the case specific files, such as the POST2 
input file, output file, Matfile, and other associated case files.  These files contain mission 
specific data such as trajectory and links to where specific files are stored.  The following is a 
listing of local case files: 
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POSTfile.inp 
POSTfile.out 
POSTfile.mat 
POSTrefile.dat 
 
Once the case files are placed in the local directory, the animation GUI files listed in section 
3.1.1 need to be placed in the local directory as well.  MCRInstaller.exe does not need to be 
present in the local directory for correct operation.  A sample setup can be found at the following 
directory: 
 
/new_home/rais/matlab/animation_gui_local_dir/ 
 
For further description of the use of these case files, refer to Appendix C. 
 
Step 3: Execute animation_gui.exe 

Once the local directory has been set up, the animation GUI can be executed.  An introduction 
window will be loaded first, as shown in Figure D.2. 
 

 
Figure D.2.  Animation GUI Introduction Window 

 
The introduction window notifies the user of the required inputs by the animation tool.  The 
window is also the identifier for the version and contact information for GUI support.  Processes 
run in the background initializing the handles.mat and usage variables for the GUI.  Clicking the 
‘Start GUI’ button initializes the main menu. 
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Step 4: GUI Main Menu 

Before the main menu is shown, the GUI will detect the current animation progress.  If previous 
work has been performed in the local directory, the relevant information will be loaded and 
displayed on the main menu shown in Figure D.3. 
 

 
Figure D.3.   GUI Main Menu 

 
The main menu holds all selections for the required inputs.  If any action that cannot be executed 
in the main menu is performed, text will appear next to the (Animate!) button notifying the user 
of the requirements for correct operation.  The four inputs to the main menu are the POST2 input 
file, output file, MATLAB™ data file, and desired output movie name.  The movie name should 
only be alpha-numeric characters, and does not require the ‘.avi’ extension.  To select the POST2 
files for use, click the corresponding button, and select the file from the resultant pop-up 
window.  The POST2 Matfile will require further refinement of the parameters once the file has 
been selected.  The Run Time Setup window will appear as shown in Figure D.4. 
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Figure D.4.  POST2 Matfile Time Interval Sorting 

 
The purpose of this window is to declare the speed at which the video will playback.  Current 
Video Length is displayed at the top, and corresponds to the difference in time of the first and last 
indices of the time variable in the MATLAB™ data file.  The times corresponding to those 
indices are displayed beneath the current video length and can be changed by entering new times 
in the corresponding text boxes.  The Run Time Interval Change portion is dedicated to declaring 
the speed the video runs at.  Event times are listed on the right, as taken from the corresponding 
POST2 ‘.out’ file.  This can be useful for determining phases of the trajectory when declaring 
run times.  To set an interval, enter an interval start and interval end time in the corresponding 
text boxes, select a run speed in the drop down menu below the interval start box, and click Set 
Interval.  Interval speed does not need to be selected for the whole video length; however, as the 
final sorting of video variables will default to 1X (real time).  Once the intervals have been input, 
click Close to return to the main menu.  
 
Step 5: Master Setup Properties 

After the input variables have been selected in the GUI main menu, the next item to address is 
master setup properties.  The master setup properties are broken into two divisions: master setup 
and variable display selection.  The first window to be displayed is the master setup window. 
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Master Setup 

The master setup window will read in current master setup properties stored in handles.mat and 
display the current version on the right side of the window.  All properties that are adjustable are 
displayed on the left hand side as shown in Figure D.5. 
 

 
Figure D.5.  Master Setup Window 

 
The animation tool will default to the settings first displayed in master setup.  For most cases, 
these defaults are satisfactory for the typical animation, and do not need to be changed.  Though, 
if the user wishes, these settings can be changed to reduce the computation time or add different 
effects to the color and lighting of the animation. 
 
First, note that changing the frames per second of the animation will affect the clock used to 
display time and the run time of the animation.  It is recommended that the frames per second 
setting not be changed, but rather the step taken by the animation tool.  Step corresponds to the 
indices of the animation.  If a quick first cut of the animation is desired, one may set the step to a 
large number to capture less frames, but span the whole length of the animation.  For example, if 
the POST2 MATLAB™ Matfile has 4,000 indices, one may set the step to 40, yielding 100 
frames of animation.  This would create a 4 second video that spans the entire length of the 
trajectory.  If there is only a set range of indices desired for the animation, say 2,000 to 3,000, 
one may set the starting index and ending index to 2,000 and 3,000 respectively, such that only 
those indices will be animated.   
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If greater animating speed or smaller file size is desired, one may also set the number of 
horizontal pixels to a smaller number.  The animation tool defaults to a 4 x 3 aspect ratio 
yielding a default setting of 800 x 600 pixels.  This may be reduced or increased for greater 
definition.   

Projection simply states the view taken by the camera as ‘perspective’ or ‘orthographic’.  What 
this means is that the ‘perspective’ camera will only capture as large a view as declared by the 
camera-viewing angle (CVA), while ‘orthographic’ will capture the entire view, not limited by 
the viewing angle. 

The option to add ground geometry will display a pop-up menu asking for a ground geometry 
file.  Ground geometry generation and definition is explained in section 3.4 of reference [1].  The 
ground geometry will always be a MATLAB™ Matfile, and must span the corresponding 
latitude and longitude ranges of the POST2 trajectory.  This means that a ground geometry that 
worked for one animation will not necessarily work for another. 

Color is dictated by red, green, and blue (RGB).  Color can be set for four items: two light 
sources, background color, and gauge color.  To change a color, click on the checkbox for the 
corresponding item, and move the slider bars left or right to the desired setting.  Light position 
can also be adjusted by moving the slider bars.  Light position is given in meters with respect to 
North, East, and Down of the spacecraft body.  If the slider bars do not cover the desired light 
position range, one can manually input the light position by typing the desired value in the text 
box above the corresponding slider bar. 

Once all the values have been dictated, click the Done button to close the master setup window 
and open the variable display selection window. 
 

 
Figure D.6.  Variable Display Window 
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Variable Display Selection 

The variable display window will read in current variable display properties stored in 
handles.mat and display the current version on the right side of the window.  All properties that 
are adjustable are displayed on the right hand side as shown in Figure D.6. 
 
The variable display selection window allows the user to select which gauges are desired in the 
animation and assign a position and variable to the selected gauge.  The left side of the window 
holds the gauge positions and defaults.  Positions are declared by numbers, which are assigned to 
each position shown in the ‘Gauge Position Reference’.  Each gauge must also have a 
corresponding variable name input.  This variable name is the name used in the POST2 
MATLAB™ data file.   
 
To select a gauge, click on the corresponding check box.  When a gauge is selected, the 
corresponding default position and variable name will be assigned to the newly selected gauge.  
To change the position, enter the number of the desired position in the gauge’s corresponding 
Position text box.  To change the POST2 Matfile variable name, overwrite the default variable 
name in the gauge’s corresponding Variable text box.   
 
There are two special gauges in the variable display selection window.  First, the Fuel Gauge 
requires an extra input for Fuel Capacity.  This input is directly related to the POST2 output 
variable used for the propellant weight.  The input fuel capacity will subtract off the value of the 
propellant weight from the total fuel capacity at every frame in the animation.  Since the fuel 
gauge is displayed as kilograms in the animation, it is recommended that the POST2 Matfile 
propellant weight variable be in terms of kilograms as well.  
 
Second, the option to display bar graphs is given by the GUI.  This allows for any variable to be 
displayed in the animation screen.  To display a bar graph, enter the POST2 Matfile variable 
name into the corresponding text box.  The bar graph will display as a moving bar along the 
bottom of the screen.  If other gauges have been placed on the bottom, overlap will occur, so it is 
advised to the user to not place gauges along the bottom row of the animation window.  If the 
user desires, the bar graphs can be placed on the right side of the screen.  This is accomplished 
by clicking the Put Right option. 
 
Once the gauges have been selected for display, click Done to close the variable display selection 
window.  For further explanation of the master setup and variable display properties, consult 
Appendix C. 
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Step 6: Geometry Properties 
 
After the master setup properties have been selected, the next item to address is geometry 
properties.  Geometry properties will declare the specific geometries used by the vehicles 
simulated in POST2.  The geometry GUI is loaded by clicking Geometry Properties from the 
main menu window.  The geometry data setup window that appears will read in current geometry 
properties stored in handles.mat and display the current version on the bottom left side of the 
GUI window.  Event data will be read in from the POST2 ‘.out’ file and displayed on the bottom 
right side of the GUI window.  All properties that are adjustable are displayed on the top as 
shown in Figure D.7. 
 

 
Figure D.7.   Geometry Data Setup Window 

 
The geometry properties are added by selecting the event, vehicle number, and geometry of the 
vehicle to then append to the geometry data file.  Other features that are input define the 
representation of the vehicle in the animation.  
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The event listing will determine when the vehicle being appended is displayed in the animation.   
 
Typically, this relates to such events as parachute openings or airbag deployment.  The GUI will 
automatically read in the events from the POST2 ‘.out’ file and load the events in the drop down 
menu next to Event to Add Vehicle. 
 
The Vehicle Number corresponds to the vehicle number designated in the POST2 ‘.inp’ file.  
 
The Vehicle Geometry may be selected from five archived vehicles or a user-defined geometry.  
The five archived vehicles are Apollo, MER, MRO, Moonrise, and MSL derived capsules.  
These vehicle geometries are selected by clicking the drop-down menu, and selecting the 
corresponding vehicle.  If a geometry file has been generated aside from the five archived 
vehicles, the user may select Browse... from the drop-down menu to open a search window.  The 
user can then find the geometry file and use the corresponding file for the Vehicle Geometry.  
The vehicle selected will be displayed to the right of the drop-down Vehicle Geometry menu. 
 
The option to Include CG Calculation is important for camera pointing properties.  If selected, 
the camera target will include the center of gravity of the vehicle in each animation frame.  If not 
selected, the camera will only focus on the vehicles with active cg’s.  This can be useful when 
peripheral vehicles are added to the primary vehicle in the animation (i.e.,– a parachute). 
 
The Include Body Axes option is a scale representation of the body axes displayed in the 
animation.  These axes are specifically taken from the coordinates used in drawing the vehicle 
geometry and are not representative of any other coordinate system.  For vehicles that do not 
have specific body axes, this property is best set to zero to reduce confusion (i.e.,– airbags). 
 
The Include Throttle Vars option will enable thruster firing visualization in the animation.  The 
GUI will automatically use the POST2 Matfile throttle variable of ‘gvrcxx’ where xx is the 
thruster number represented in the POST2 ‘.inp’ file.  The number of thrusters must be declared 
in the first box to the right of this option entitled (How Many?).  If this option is invoked, the 
user will need to be sure that the thruster locations are either in the POST2 ‘.inp’ file or in an 
included file that is present in the local directory.  If an extension is present on the POST2 
Matfile throttle variables, the extension must be declared in the second box to the right of this 
option entitled (Extension?). 
 
Once the geometry properties have been selected for a vehicle, the data must be appended to the 
geometry data file.  This is accomplished by clicking the Append Data button.  The geometry 
data file contents will be displayed on the bottom left side of the window.  If an incorrect 
geometry property is input, the Remove Last button will delete the last appended vehicle from the 
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geometry data file.  Once the geometry properties have been input, clicking the Close button will 
close the window.  For further explanation of geometry properties, consult Appendix C. 
 
Step 7: Camera Properties 

After the geometry properties have been selected, the next item to address is camera properties.  
Camera properties will declare the specific path the camera takes in the animation to view the 
geometry.  The camera properties GUI are loaded by clicking Camera Properties from the main 
menu window.  The camera properties setup window that appears will read in current camera 
properties stored in handles.mat and display the current version on the left and top right side of 
the GUI window.  Event data will be read in from the POST2 ‘.out’ file and displayed on the 
bottom right side of the GUI window.  Any erroneous actions made in the camera properties GUI 
will be addressed by text that appears in the bottom right of the window, beneath the event 
readout.  All properties that are adjustable are displayed on the left as shown in Figure D.8. 
 

 
Figure D.8.   Camera Properties Setup Window 

 
The camera properties address five options, the camera time, camera-viewing angle (CVA), 
camera position, camera target, and camera fixed time (CFT).  Each option is changed by either 
selecting from a drop-down menu, or by manual input.  As in geometry properties, the user can 
either append or remove each set of camera properties desired in the camera properties data file.  
An option to view the camera setting is available by clicking View. 
 
The Time option is related specifically to the trajectory time.  The event times are listed on the 
bottom right of the window for reference.  The user can also specify the time by Event by 
selecting from the drop down menu.  For each time entry, the animation tool will interpolate the 
camera position between the previous times so that a seamless transition is made from position to 
position. 
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The CVA option declares the camera-viewing angle in degrees from the camera position.  This 
has the effect of zooming in and out on the target vehicle. 
 
The camera position is dictated by four options, posi_cs, Camera Position x, Camera Position y, 
and Camera Position z.  The first option, posi_cs, declares the coordinate system of the camera 
position.  The three remaining options declare the camera position with respect to the vehicle 
center of gravity.  Position is measured in the units used to draw the vehicle geometries, typically 
meters. 
 
The camera target is dictated by similar options, targ_cs, Camera Target x, Camera Target y, 
and Target Position z.  The first option, targ_cs, declares the coordinate system of the camera 
target.  The three remaining options declare the camera target position with respect to the vehicle 
center of gravity.  Target is measured in the units used to draw the vehicle geometries, typically 
meters. 
 
The final option, CFT, is the time or event when the vehicle position is looked up as the fixed 
location for the camera.  The CFT option may be input using event times as well, but has to be 
input manually as ‘evxxx’ where xxx represents the event number. 
 
Once the camera properties have been input, the user may view a frame of animation using their 
current camera properties.  This is accomplished by clicking View.  As data must now be 
processed, an actual frame can take on the order of minutes to actually appear.  During this time, 
the user should refrain from pressing any other buttons in the GUI.  Once the frame has 
appeared, the user may inspect the image and adjust the camera properties accordingly. 
 
Once the camera properties have been selected, the data must be appended to the camera 
properties data file.  This is accomplished by clicking the Append button.  The camera properties 
data file contents will be displayed on the top right side of the window.  If an incorrect camera 
property is input, the Remove button will delete the last appended camera setting from the 
camera properties data file.  Once the camera properties have been input, clicking the Close 
button will close the window.  For further explanation of camera properties, consult Appendix C. 
 
Step 8: Animate! 

When all the above steps have been completed, the animation GUI will have developed the 
necessary data files to provide the animation tool with a complete animation definition.  These 
data files are master_setup.txt, geom_data, and camera_properties.txt.  Refer to Appendix C for 
the structure and importance of these data files.   
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To generate the animation, click the (Animate!) button in the main menu window.  The 
animation GUI will then pass the data files to the animation tool executable, and generate the 
movie.  It is recommended the computer being used to animate the POST2 trajectory have at 
least 512 Mb of random access memory (RAM).  If the number of frames being animated is too 
large, the animation tool will error because there will not be enough physical memory available.  
A good ratio to go by is for every 1500 frames of animation, there needs to be at least 256 Mb of 
RAM.   
 
Figure D.9 shows a sample frame taken from a trajectory animation using the animation GUI. 
 

 
 

Figure D.9.  Sample Animation Frame 
  

References 
[D.1] MATLAB™ Compiler User’s Guide, Version 4. October 2004 
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Appendix E.  POST2 Scripts Users’ Guide  
Written by Loreyna Yeung; Edited by Scott A. Striepe 

 
I. Single Post Run 
Files Location:  /app/production/programs.c2/Single_Post_Run 
 
Files Requirements: 
 
1) run_s_post.pl: Driver script to generate PERL scripts and submit a single POST job to the 

queue.   
2) s_post.tpl:  Template to create s_post.pl.  
 
Both files can be place in a common area such as the 'bin' directory as long as the user 
environment path is set correctly. The file run_s_post.pl can be modified to user specified POST 
executable path, name, and menu display selections. 
 
How to Run: 
Default: run_s_post.pl uses low priority queue (short). 
 
 Example: run default POST executable and driver script is in the bin directory. 
               run_s_post.pl filename.inp 0 
 
(Note: input filename extension can be omitted) 
 
 Example: run menu mode to select POST executable and driver script is in the working 
 directory. 
./run_s_post.pl filename 
 
Options: 
-s To save outputs by creating a temporary area under user's working directory and place all 
the  outputs after program run. 
Example: run POST executable selection #2 + save + verbose  
      ./run_s_post.pl  filename 2 -vs      
 
-l To run local by setting everything on the local node's /node/tmp directory and only brings 
back the output when it is done. 
Example: default + local + verbose  
   ./run_s_post.pl filename 0 -vl 
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-v To displays more information during program run. 
Example: run POST executable selection #2 + verbose  
    ./run_s_post.pl  filename 2 -v  
  
-q To sets user queue type to be run (Default queue type is Max_All_5min) 
Example: run default POST executable + Max_N64_1hr + verbose  
    ./run_s_post.pl  filename 0 –vq Max_N64_1hr  
 
-m To create Matlab file. 
 
Monte Carlo 
Input Generation 
Files Location;  /app/production/programs.c2/MPI_Monte_Carlo/ 
 
Files Requirements: 
    monte_inputs.pl - A script to generate the monte input file. 
    ovat_inputs.pl - A script to generate the ovat input file. 
    perl_make.pl - A script to generate a PBS script to run the above PERL script on the cluster. 
 
How to Run 
 
“./make” - will generate the milestone, monte_inputs.dat, ovat_inputs.dat and executes the 
monte_carlo run to generate the output_variables file. 
      
   ./make <option> - will generate only the option you give it. 
    
   <options>:  
        milestone - creates the milein.mc 
        inputs - creates the monte_inputs.dat 
        ovat - creates the ovat_inputs.dat 
        monte - runs the monte_carlo and generates the  
        output_variables file 
    
Log file 
    q_input.log - logs the status of the run and errors if any. 
     
Debug 
Check the q_input.log first. This file will most likely tell you what went wrong while generating 
your inputs. 
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PERL Scripts 
Files Location:  /app/production/programs/MPI_Monte_Carlo 
 
Files Requirement 
 
qsub_mpi_nqueue.pl - driver script to generate PBS and PERL scripts  
                     to submit Monte Carlo POST jobs to the queue. 
qtemplate.tpl - contains all the templates to create PBS script,  
       to generate q_p2_x.pl for low priority (short or ALL_MAX_5min) queue, 
        to generate q_p2_x.pl for high priority (n64 or Max_N64_1hr) queue,         
p2_qsub.pl - script to execute POST run (edit POST executable path) 
 
How to Run 
 
There are two ways to run these scripts: 
1.  
a)  Copy qtemplate.tpl to the 'bin' directory and set to an appropriate environment path in the 
'.cshrc' file (don't forget to source the file).  The driver script will always use qtemplate.tpl in the 
'bin' directory unless it is in the working directory 
 
b)  Copy qsub_mpi_nqueue.pl either to the 'bin' directory, or the working directory or both.  
To run script is in the 'bin' directory, follow the same setup as above. To run script in the 
working directory, type: 
  “./qsub_mpi_nqueue.pl” at command prompt to run. 
        
c)  To setup system to look for the driver script in the working directory then the 'bin', 
environment path must is set correctly in  '.cshrc' file. Follow example below. 
Example: set path=( . ~ ~/bin $path $HOME /usr/local/bin) 
Note: the '.' is current directory, and '~' is home directory.     
   
d)  Copy p2_qsub.pl to the working directory. 
Make sure permission is set correctly. 
For more submission examples, please see below. 
 
2.  
a)  Copy qsub_mpi_nqueue.pl and qtemplate.tpl to the production area other than the 'bin' 
directory. 
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b)  Setup path to the production area in qsub_mpi_nqueue.pl (instruction is in the script)  
 
c)  Create a project directory and copy p2_qsub.pl to this location. 
 
d)  Optional, create a link to the production area in the project directory. 
Default: qsub_mpi_nqueue.pl uses both high priority queue (Max_N64_1hr or n64) and low 
priority queue (ALL_MAX_5min or short). 
 Example, default + verbose ./qsub_mpi_nqueue -v 
 
Options 
 
-j To use new job name instead of using default job name "q_post" job name can be written 
in file 'job.name'. If -j option is not given in the command line, the program will look for 
'job.name'. If 'job.name' file doesn't exist, job name will go back to default 'q_post' 
 
IMPORTANT NOTE:  The specific name may be up to and including 15 characters in length. It 
must consist of printable, non-whitespace characters with the first character alphabetic, and 
contain no "special characters". 
 
   Example: run only on ALL_N64_1hr queue and automatic node selection with job name 
'msl’  
                        ./qsub_mpi_nqueue -pajmsl 
  
-c To set user's specified queue size on ALL_N64_1hr queue for all jobs 
 
 Example: use 25 node only 
                ./qusb_mpi_nqueue -c25 
 
-a Automatically select maximum available node on 64 node primary queue, and program 

will not prompt user for number of nodes input. 
-f To run entire input cases on low priority queue, Max_All_5min. 
-p To run entire input cases on the one hour time limit high priority queue. 
-v To displays more information during program run 
-s To save all the outputs to working directory 
-t To set the job length for each case run and default is set to 30 seconds: 
 
 Example: rerun + joblength + low priority queue(short): 
               ./qsub_mpi_nqueue -r1,2,5:10 -t15 
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-r To rerun specified input cases; user must separate each case with a comma and set the 
range using colon. 

 
 Example: rerun + low priority queue (short) 
               ./qsub_mpi_nqueue -fr1,2,5:10 
-q To run subset of cases; User must separate each case with comma and set the range using 

colon. 
 Example: verbose+ subset+ low priority queue (short) 
               ./qsub_mpi_nqueue -vfq1:3,4 
 
Test Suite 
 
Files Location: /app/production/programs.c2/Test_Suite 
 
File Requirements: 
 
1)  go_n_tpl: This is a template c-shell script that executes old and new POST. 
2)  tqsub_p2_tpl.pbs: A template PBS script. 
3)  tq_p2_tpl.pl: A template script used to run go_n_tpl. 
4)  mace: A shell script used to compare the old and the new post runs. 
5)  old_pst: Link the production POST to "old_pst". 
6)  new_pst: Link your POST to "new_pst". 
7)  test cases: Link /app/production/post2.testing/cluster/tests to "tests" 
8)  include: Link /app/production/post2.testing/cluster/include to "include" 
 
All these files are needed in the same directory with the old and new post executables. 
 
Usage:  
No space after between the option and the parameter input “< >.” 
 
-v Verbose 
     
    Example: run_testsuite.pl -v 
                    
-l<set number> Subset of test suite, <set number> is the subset number you want to run.  
       
       Example: run_testsuite.pl -vaq1:3:6,100 
 
-i<cluster number> Runs the test suite on specific cluster: 
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       -i default submits job to eseb-fs2 
       -i1 submits job to “esebcluster” 
       -i2 submits job to “eseb-fs2” 
       -i3 submits job to “i3-head” Note: must submit from eseblab100 to 103, i3lab1 to i3lab4 
       -i4 submits job to “i4-head” 
         
 Example: run_testsuite.pl -vi3 
         
-b Both new and old output, generates both new and old output for any inputs (default or 

project series).   
 
-a Add all projects with series number greater or equal to 100 and runs projects series in 

addition to the default set of series.  The location of the project series path needs to be 
specified either at the command line using the -c option, or the program will prompt for a 
path. 

 
-p<output_path> output path for old POST output, specify the location of the old POST 
output path that will be use to compare with the new output for the default series (1 to 10).  
Absolute or relative path can be used. 
  
-c<project_input_path> Project series input path; specify the location where the project 
series inputs are located. Absolute or relative path can be used. 
  
 Example: -cseries/101, the project series is located in the series/101 directory. 
 
-o<project_output_path>   Project series output path, specify the location of the project series 
output path.  Absolute or relative path can be used. 
 
-j<project_series_input_path>  Just project series, generate output for project series only. The 
project series input location is required. 
 
 -s Single CPU mode, run job on a stand-alone single CPU mode 
 
MACE 
Files Location: /app/production/programs/Test_Suite 
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Note: The profile compare scripts were combined into just one file “mace”, and new options 
were added to account for the new capabilities.  By default, the script compares only series 1 to 
10 unless user specifies other option. 
 
Files requirements: 
 
 -PCNMLT 
 -profcomp 
 -rcompare_8 
 -rcompare_9 
 
How to Run:  no dash (-) nor comma (,) requires for using the options below. 
 
 J Just series, compare only project series. 
 
  ex. mace j 
 
 b Both default (1 to 10) and project series. 
 
  Example: mace b 
 
 <selected_series> no option requires, just enter each series number with a space. 
 
  Example: mace 2 3 9 100 (compare series 2, 3, 9, and 100) 
 
 
* Check the files good.txt, bad.txt, exceed.txt, and report.txt for the compare in "outfiles/tests." 
 
Delete PBS Jobs Utilities 
annihilate.pl 
Files Location:  /app/production/programs/Utilities 
 
Description: performs a qdel to a job and deletes the zombie jobs on each node that the job was 
running on and cleans up the /nodes/tmp area. 
 
How to Run: 
 
annihilate.pl <job id>, where job id is the id given by PBS 
    or 
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annihilate.pl <node numbers> where node numbers is the cluster nodes   
 
Example:  job ID: 149912.esebcluster  
              annihilate.pl 149912 
 
Example: to clean node number 2, 4, 6, and 7 
  annihilate.pl 2,4,6,7  
                                   
Example: to clean node number from 5 to 10 
  annihilate.pl 5:10 
 
eradicate.pl 
Files Location:  /app/production/programs/Utilities 
 
Description: Cleans up the '/nodes/tmp and /tmp' area by determine what files or directories you 
own and remove it from the area. 
 
How to Run: 
      eradicate.pl<user's id> 
 


